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ABSTRACT 

We characterize the graphs that have polyhedral embeddings in the projective 
plane. We also prove that if one embedding of a graph is polyhedral then all 
embeddings of that graph are polyhedral. 

I. Introduction 

We shall say that an embedding of a graph G in a 2-manifold is a polyhedral em- 

bedding provided the faces are closed 2-cells, the vertices are at least 3-valent, and 

the faces meet the way faces in a convex polytope meet (i.e., two faces intersect 

on a vertex, an edge or not at all). A famous theorem of  Steinitz [3] states that 

when the manifold is the 2-sphere, all such graphs are isomorphic to the graphs of  

vertices and edges of  convex 3-polytopes. It also follows from Steinitz's theorem 

that a graph has a polyhedral embedding in the sphere if and only if it is planar 

and 3-connected. It is well known that each planar 3-connected graph has only one 

embedding in the sphere (see, for example, [4]). 

In this paper we give necessary and sufficient conditions for a graph to have a 

polyhedral embedding in the projective plane. 

Although a polyhedral map may have more than one embedding in the projec- 

tive plane, we show that if a graph has a polyhedral embedding in the projective 

plane II, then all embeddings in II are polyhedral. 
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2. Definitions 

All graphs in this paper are without loops on multiple edges. If a graph G is 

embedded in a 2-manifold M, then the faces of G are the closures of the connected 

components of  M - G. It is easily seen that the interiors of  faces of  G are arcwise 

connected. The boundary of  a face F will be denoted/3 (F) .  

A graph G embedded in a 2-manifold is a polyhedral map provided each vertex 

is of valence at least 3, each face is a closed 2-cell, and every two faces have a con- 

nected intersection. 

If G embedded in M is a polyhedral map, we also say that G has a polyhedral 

embedding in M. 

We shall use two operations for constructing polyhedral maps. We shall say that 

a graph GI embedded in M is obtained from a graph G2 embedded in M by edge 

shrinking provided shrinking an edge e of  G2 to a vertex v and coalescing multi- 

ple edges bounding any resulting 2-sided faces produces an embedding of  G 1 in 

M. The inverse of  shrinking edge e is called splitting vertex v. 

If G is embedded in M and we add an edge e across a face F of  M such that the 

endpoints of  e do not lie on the same edge of  F, we say that the resulting graph 

is obtained from G by splitting face F. Note that new vertices may or may not be 

introduced by this operation depending on whether the endpoints of  e are verti- 

ces of  G or lie in the relative interiors of  edges of  G. 

By a theorem of  the author [1], the polyhedral maps in the projective plane 

(called PPPM's)  can be generated from a set of  seven maps (see Fig. l) by vertex 

splitting and face splitting. That is, if G is a P P P M  then there is a sequence of  

PPPM's  Go, G1 . . . . .  Gn = G with Go one of the seven maps in Fig. 1 and each Gi 

obtained from Gi-l by either vertex splitting or edge splitting, for 1 _< i _< n. The 

seven maps in Fig. 1 will be called the minimal maps for the projective plane. 

If  a simple closed curve C in a 2-manifold M bounds a cell that is a subset of  

M, we say that C is planar, otherwise we say that C is nonplanar. 

3. Polyhedral embeddings in H 

THEOREM 1. Let G be a 3-connected graph embedded in the projective plane 

II and suppose that for every vertex v of  G, G - v is nonplanar. Then the embed- 

ding is polyhedral. 

PROOF. Let G be embedded in II. Suppose some face F in G is not bounded by 

a simple closed curve. Since each vertex of  G is at least 2-valent, each vertex of  F 

will meet at least two edges of  F. Thus F contains a simple circuit C. 
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Fig. 1. 

Case L C is not the entire boundary of  F and no other edge of  3 (F)  meets C. 

If  C is planar, then either F is enclosed by C or F lies outside the cell X bounded 

by C. In the first case the connectedness of  G implies that no edges of  G lie inside 

C, thus F is the cell X and C is the entire boundary of  F, a contradiction. In the 

second case, C and all vertices and edges inside it are separated from the rest of  

G contradicting the fact that G is connected. If  C is nonplanar, then in a neigh- 

borhood of  C is a nonplanar closed curve lying in F missing G. Cutting II along 

C yields a cell with G embedded in it, a contradiction to our hypotheses. 

Case I1. C is not the entire boundary of  F and an edge e of  3 (F),  that is not on 

C, meets C at a vertex v. Let el and e2 lie on C and meet at v. Let el ,e2,e be the 

clockwise cyclic ordering of  these three edges about v. Let N be a neighborhood 

of  v and suppose points of  F lie in the portion of  N clockwise between el and e2. 

Since e is on f l(F)  there is a point x of  F in a portion of  N either between e2 

and e or between e and el (clockwise). Since F is arcwise connected, there is an arc 
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connecting x to any point y in the portion of N between el and e2. Thus in F there 

is a closed curve C1 lying in F meeting G only at v and containing x and y. If  C1 

is planar, then it separates one of  e~ or e2 from e which contradicts the 3-connec- 

tivity of  G. 

Suppose C~ is nonplanar. We cut II along C~. This separates v into two verti- 

ces, v~ and v2, and produces a cell A containing the graph G'  produced from G 

by separating v. Furthermore, vl and v2 lie on the same face of the embedding of  

G '  in A, thus we can identify v~ and v2 in A and obtain a planar embedding of G, 

contradicting our hypotheses. 

We now have that C is the entire boundary of  F and thus we may assume that 

every face of  G is bounded by a simple closed curve. 

Suppose now that our embedding of  G is not polyhedral. Then there are two 

faces, F~ and F2, whose intersection is not connected. 

We choose vertices x and y lying in different connected components of  F~ O F2 

and let Pi be a path in F~ meeting/3 (F/) only at x and y. Now, PI U/32 is a simple 

closed curve. We treat two cases. 

Case L PI U P2 is planar. In this case x and y separate G, a contradiction. 

Case IL P1 U P2 is nonplanar. Consider G - x (with the embedding in II in- 

duced by the embedding of  G). In this graph, P~ U P2 is a simple nonplanar 

closed curve meeting G - x only at y. By the argument above, G - x is planar, con- 

tradicting our hypotheses. Thus faces meet properly and the embedding of  G is 

polyhedral. 

THEOREM 2. I f  G has a polyhedral embedding in the projective plane II, then 

for every vertex x of  G, G - x is nonplanar. 

PROOF. By exhaustion, one can check this property for the seven minimal poly- 

hedral maps for II (Fig. 1). We now proceed by induction on the number of  edges 

of  G. 

Let G be nonminimal. 

Case L G is obtained from a polyhedral map G~ by adding an edge. If x is not 

a new vertex created by adding e, then since G~ - x is nonplanar, G - x is non- 

planar. If  x is a new (and thus 3-valent) vertex of  e, then G - x is the same as Gx 

minus one edge e~. This, however, contains G~ minus a vertex of  el, which is non- 

planar, thus G - x is nonplanar. 

Case IL G is obtained from a polyhedral map G1 by splitting a vertex v of  

G~ into two vertices v~ and v2. If x is not Vl or v2, then G1 - x is obtained from 
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G - x by shrinking the edge v~ v 2. Since edge shrinking preserves planari ty and 

G~ - x is nonpNnar ,  G - x must  be nonplanar .  

I f  x = v~ or  v2, then G - x contains G - [ Vl, v2 ] = G1 - v, which is nonplanar ,  

thus G - x is nonplanar .  

THEOREM 3. A graph G has a polyhedral embedding in 1I if and only i f#  is em- 

beddable in 1I, 3-connected, and for each vertex x, G - x is nonplanar. 

PROOF. Sufficiency o f  these condit ions is given by Theorem 1. 

By a theorem o f  the au thor  [2] the graph o f  every P P P M  is 3-connected. The- 

orem 2 gives the necessity o f  the nonplanar i ty  o f  G - x. 

COROLLARY. If G has a polyhedral embedding in II, then every embedding in 

II is polyhedral. 

PROOF. I f  G has a polyhedral embedding, then by Theorem 3 it satisfies the hy- 

potheses o f  Theorem I. 
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