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ABSTRACT
We characterize the graphs that have polyhedral embeddings in the projective
plane. We also prove that if one embedding of a graph is polyhedral then all
embeddings of that graph are polyhedral.

1. Introduction

We shall say that an embedding of a graph G in a 2-manifold is a polyhedral em-
bedding provided the faces are closed 2-cells, the vertices are at least 3-valent, and
the faces meet the way faces in a convex polytope meet (i.e., two faces intersect
on a vertex, an edge or not at all). A famous theorem of Steinitz [3] states that
when the manifold is the 2-sphere, all such graphs are isomorphic to the graphs of
vertices and edges of convex 3-polytopes. It also follows from Steinitz’s theorem
that a graph has a polyhedral embedding in the sphere if and only if it is planar
and 3-connected. It is well known that each planar 3-connected graph has only one
embedding in the sphere (see, for example, [4]).

In this paper we give necessary and sufficient conditions for a graph to have a
polyhedral embedding in the projective plane.

Although a polyhedral map may have more than one embedding in the projec-
tive plane, we show that if a graph has a polyhedral embedding in the projective
plane II, then all embeddings in IT are polyhedral.
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2. Definitions

All graphs in this paper are without loops on multiple edges. If a graph G is
embedded in a 2-manifold M, then the faces of G are the closures of the connected
components of M — G. It is easily seen that the interiors of faces of G are arcwise
connected. The boundary of a face F will be denoted 8 (F).

A graph G embedded in a 2-manifold is a polyhedral map provided each vertex
is of valence at least 3, each face is a closed 2-cell, and every two faces have a con-
nected intersection.

If G embedded in M is a polyhedral map, we also say that G has a polyhedral
embedding in M.

We shall use two operations for constructing polyhedral maps. We shall say that
a graph G, embedded in M is obtained from a graph G, embedded in M by edge
shrinking provided shrinking an edge e of G, to a vertex v and coalescing multi-
ple edges bounding any resulting 2-sided faces produces an embedding of G, in
M. The inverse of shrinking edge e is called splitting vertex v.

If G is embedded in M and we add an edge e across a face F of M such that the
endpoints of e do not lie on the same edge of F, we say that the resulting graph
is obtained from G by splitting face F. Note that new vertices may or may not be
introduced by this operation depending on whether the endpoints of e are verti-
ces of G or lie in the relative interiors of edges of G.

By a theorem of the author [1], the polyhedral maps in the projective plane
(called PPPM’s) can be generated from a set of seven maps (see Fig. 1) by vertex
splitting and face splitting. That is, if G is a PPPM then there is a sequence of
PPPM’s Gy, G4, . . ., G, = G with G, one of the seven maps in Fig. 1 and each G;
obtained from G;_, by either vertex splitting or edge splitting, for 1 <i < n. The
seven maps in Fig. 1 will be called the minimal maps for the projective plane.

If a simple closed curve C in a 2-manifold M bounds a cell that is a subset of
M, we say that C is planar, otherwise we say that C is nonplanar.

3. Polyhedral embeddings in II

TueoREM 1. Let G be a 3-connected graph embedded in the projective plane
11 and suppose that for every vertex v of G, G — v is nonplanar. Then the embed-
ding is polyhedral.

Proor. Let G be embedded in II. Suppose some face Fin G is not bounded by
a simple closed curve. Since each vertex of G is at least 2-valent, each vertex of F
will meet at least two edges of F. Thus F contains a simple circuit C.
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Fig. 1.

Case I. C is not the entire boundary of F and no other edge of 8(F) meets C.
If C is planar, then either F is enclosed by C or F lies outside the cell X bounded
by C. In the first case the connectedness of G implies that no edges of G lie inside
C, thus F is the cell X and C is the entire boundary of F, a contradiction. In the
second case, C and all vertices and edges inside it are separated from the rest of
G contradicting the fact that G is connected. If C is nonplanar, then in a neigh-
borhood of C is a nonplanar closed curve lying in F missing G. Cutting II along
C yields a cell with G embedded in it, a contradiction to our hypotheses.

Case II. C is not the entire boundary of F and an edge e of §(F), that is not on
C, meets C at a vertex v. Let e, and e, lie on C and meet at v. Let e, e,,e be the
clockwise cyclic ordering of these three edges about v. Let N be a neighborhood
of v and suppose points of F lie in the portion of N clockwise between e, and e,.

Since e is on B(F) there is a point x of F in a portion of N either between e,
and e or between e and e, (clockwise). Since F is arcwise connected, there is an arc
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connecting x to any point y in the portion of N between e; and e,. Thus in F there
is a closed curve C, lying in F meeting G only at v and containing x and y. If C,
is planar, then it separates one of e, or e, from e which contradicts the 3-connec-
tivity of G.

Suppose C; is nonplanar. We cut II along C,. This separates v into two verti-
ces, v; and v,, and produces a cell A containing the graph G’ produced from G
by separating v. Furthermore, v, and v, lie on the same face of the embedding of
G’ in A, thus we can identify v, and v, in A and obtain a planar embedding of G,
contradicting our hypotheses.

We now have that C is the entire boundary of F and thus we may assume that
every face of G is bounded by a simple closed curve.

Suppose now that our embedding of G is not polyhedral. Then there are two
faces, F, and F,, whose intersection is not connected.

We choose vertices x and y lying in different connected components of F; N F,
and let P; be a path in F; meeting 8 (F;) only at x and y. Now, P, U P; is a simple
closed curve. We treat two cases.

Case I. P, U P, is planar. In this case x and y separate G, a contradiction.

Case II. P, U P, is nonplanar. Consider G — x (with the embedding in II in-
duced by the embedding of G). In this graph, P; U P, is a simple nonplanar
closed curve meeting G — x only at y. By the argument above, G — x is planar, con-
tradicting our hypotheses. Thus faces meet properly and the embedding of G is
polyhedral.

THEOREM 2. If G has a polyhedral embedding in the projective plane 11, then
for every vertex x of G, G — x is nonplanar.

Proor. By exhaustion, one can check this property for the seven minimal poly-
hedral maps for IT (Fig. 1). We now proceed by induction on the number of edges
of G.

Let G be nonminimal.

Case I. G is obtained from a polyhedral map G, by adding an edge. If x is not
a new vertex created by adding e, then since G; — x is nonplanar, G — x is non-
planar. If x is a new (and thus 3-valent) vertex of e, then G — x is the same as G,
minus one edge e;. This, however, contains G, minus a vertex of e;, which is non-
planar, thus G — x is nonplanar.

Case II. G is obtained from a polyhedral map G, by splitting a vertex v of
G, into two vertices v, and v,. If x is not v; or v,, then G, — x is obtained from
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G — x by shrinking the edge v, v,. Since edge shrinking preserves planarity and
G, — x is nonplanar, G — x must be nonplanar.

If x = v, or v,, then G — x contains G — {v,,v,} = G, — v, which is nonplanar,
thus G — x is nonplanar.

THEOREM 3. A graph G has a polyhedral embedding in I1 if and only if it is em-
beddable in 11, 3-connected, and for each vertex x, G — x is nonplanar.

Proor. Sufficiency of these conditions is given by Theorem 1.
By a theorem of the author [2] the graph of every PPPM is 3-connected. The-
orem 2 gives the necessity of the nonplanarity of G — x.

CoroLLARY. If G has a polyhedral embedding in 11, then every embedding in
I1 is polyhedral.

Proor. If G has a polyhedral embedding, then by Theorem 3 it satisfies the hy-
potheses of Theorem 1.
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